CONTENTS

Preface xix
How to use this book xxiv
Acknowledgements xxviii
Dedication xxx
Symbols used in this book xxxi
Some maths revision xxxiii

1 Why is my evil lecturer forcing me to learn statistics? 1

1.1. What will this chapter tell me? 1

1.2. What the hell am I doing here? I don’t belong here 1

1.2.1. The research process 1

1.3. Initial observation: finding something that needs explaining 3

1.4. Generating theories and testing them 4

1.5. Data collection 1: what to measure 7

1.5.1. Variables 7

1.5.2. Measurement error 10

1.5.3. Validity and reliability 11

1.6. Data collection 2: how to measure 12

1.6.1. Correlational research methods 12

1.6.2. Experimental research methods 13

1.6.3. Randomization 17

1.7. Analysing data 18

1.7.1. Frequency distributions 18

1.7.2. The centre of a distribution 20

1.7.3. The dispersion in a distribution 23

1.7.4. Using a frequency distribution to go beyond the data 24

1.7.5. Fitting statistical models to the data 26

What have I discovered about statistics? 28
Key terms that I’ve discovered 28
Smart Alex’s stats quiz 29
Further reading 29
Interesting real research 30
2 Everything you ever wanted to know about statistics (well, sort of)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. What will this chapter tell me?</td>
<td>31</td>
</tr>
<tr>
<td>2.2. Building statistical models</td>
<td>32</td>
</tr>
<tr>
<td>2.3. Populations and samples</td>
<td>34</td>
</tr>
<tr>
<td>2.4. Simple statistical models</td>
<td>35</td>
</tr>
<tr>
<td>2.4.1. The mean: a very simple statistical model</td>
<td>35</td>
</tr>
<tr>
<td>2.4.2. Assessing the fit of the mean: sums of squares, variance and standard deviations</td>
<td>35</td>
</tr>
<tr>
<td>2.4.3. Expressing the mean as a model</td>
<td>38</td>
</tr>
<tr>
<td>2.5. Going beyond the data</td>
<td>40</td>
</tr>
<tr>
<td>2.5.1. The standard error</td>
<td>40</td>
</tr>
<tr>
<td>2.5.2. Confidence intervals</td>
<td>43</td>
</tr>
<tr>
<td>2.6. Using statistical models to test research questions</td>
<td>48</td>
</tr>
<tr>
<td>2.6.1. Test statistics</td>
<td>52</td>
</tr>
<tr>
<td>2.6.2. One- and two-tailed tests</td>
<td>54</td>
</tr>
<tr>
<td>2.6.3. Type I and Type II errors</td>
<td>55</td>
</tr>
<tr>
<td>2.6.4. Effect sizes</td>
<td>56</td>
</tr>
<tr>
<td>2.6.5. Statistical power</td>
<td>58</td>
</tr>
</tbody>
</table>

What have I discovered about statistics?

- Key terms that I've discovered
- Smart Alex's stats quiz
- Further reading
- Interesting real research

3 The SPSS environment

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. What will this chapter tell me?</td>
<td>61</td>
</tr>
<tr>
<td>3.2. Versions of SPSS</td>
<td>62</td>
</tr>
<tr>
<td>3.3. Getting started</td>
<td>62</td>
</tr>
<tr>
<td>3.4. The data editor</td>
<td>63</td>
</tr>
<tr>
<td>3.4.1. Entering data into the data editor</td>
<td>69</td>
</tr>
<tr>
<td>3.4.2. The 'Variable View'</td>
<td>70</td>
</tr>
<tr>
<td>3.4.3. Missing values</td>
<td>77</td>
</tr>
<tr>
<td>3.5. The SPSS viewer</td>
<td>78</td>
</tr>
<tr>
<td>3.6. The SPSS SmartViewer</td>
<td>81</td>
</tr>
<tr>
<td>3.7. The syntax window</td>
<td>82</td>
</tr>
<tr>
<td>3.8. Saving files</td>
<td>83</td>
</tr>
<tr>
<td>3.9. Retrieving a file</td>
<td>84</td>
</tr>
</tbody>
</table>

What have I discovered about statistics?

- Key terms that I've discovered
- Smart Alex's tasks
- Further reading
- Online tutorials

4 Exploring data with graphs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. What will this chapter tell me?</td>
<td>87</td>
</tr>
<tr>
<td>4.2. The art of presenting data</td>
<td>88</td>
</tr>
<tr>
<td>4.2.1. What makes a good graph?</td>
<td>88</td>
</tr>
<tr>
<td>4.2.2. Lies, damned lies, and ... erm ... graphs</td>
<td>90</td>
</tr>
</tbody>
</table>
5 Exploring assumptions

5.1. What will this chapter tell me?
5.1.1. What are assumptions?
5.1.2. Assumptions of parametric data
5.1.3. The assumption of normality
5.1.3.1. Oh no, it's that pesky frequency distribution again: checking normality visually
5.1.3.2. Quantifying normality with numbers
5.1.3.3. Exploring groups of data
5.1.4. Testing whether a distribution is normal
5.1.4.1. Doing the Kolmogorov–Smirnov test on SPSS
5.1.4.2. Output from the explore procedure
5.1.4.3. Reporting the K–S test
5.1.5. Testing for homogeneity of variance
5.1.5.1. Levene's test
5.1.5.2. Reporting Levene's test
5.1.6. Correcting problems in the data
5.1.6.1. Dealing with outliers
5.1.6.2. Dealing with non-normality and unequal variances
5.1.6.3. Transforming the data using SPSS
5.1.6.4. When it all goes horribly wrong

What have I discovered about statistics?
Key terms that I've discovered
Smart Alex's tasks
Further reading
Online tutorial
Interesting real research
6 Correlation

6.1. What will this chapter tell me? 1
6.2. Looking at relationships 1
6.3. How do we measure relationships? 1
 6.3.1. A detour into the murky world of covariance 1
 6.3.2. Standardization and the correlation coefficient 1
 6.3.3. The significance of the correlation coefficient 1
 6.3.4. Confidence intervals for \(r \) 1
 6.3.5. A word of warning about interpretation: causality 1
6.4. Data entry for correlation analysis using SPSS 1
6.5. Bivariate correlation 1
 6.5.1. General procedure for running correlations on SPSS 1
 6.5.2. Pearson’s correlation coefficient 1
 6.5.3. Spearman’s correlation coefficient 1
 6.5.4. Kendall’s tau (non-parametric) 1
 6.5.5. Biserial and point-biserial correlations 1
6.6. Partial correlation 2
 6.6.1. The theory behind part and partial correlation 2
 6.6.2. Partial correlation using SPSS 2
 6.6.3. Semi-partial (or part) correlations 2
6.7. Comparing correlations 3
 6.7.1. Comparing independent \(r \) 3
 6.7.2. Comparing dependent \(r \) 3
6.8. Calculating the effect size 1
6.9. How to report correlation coefficients 1

What have I discovered about statistics? 1

Key terms that I’ve discovered

Smart Alex’s tasks

Further reading

Online tutorial

Interesting real research

7 Regression

7.1. What will this chapter tell me? 1
7.2. An introduction to regression 1
 7.2.1. Some important information about straight lines 1
 7.2.2. The method of least squares 1
 7.2.3. Assessing the goodness of fit: sums of squares, \(R \) and \(R^2 \) 1
 7.2.4. Assessing individual predictors 1
7.3. Doing simple regression on SPSS 1
7.4. Interpreting a simple regression 1
 7.4.1. Overall fit of the model 1
 7.4.2. Model parameters 1
 7.4.3. Using the model 1
7.5. Multiple regression: the basics 2
 7.5.1. An example of a multiple regression model 2
 7.5.2. Sums of squares, \(R \) and \(R^2 \) 2
 7.5.3. Methods of regression 2
7.6. How accurate is my regression model? 2
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.1.</td>
<td>Assessing the regression model I: diagnostics</td>
<td>214</td>
</tr>
<tr>
<td>7.6.2.</td>
<td>Assessing the regression model II: generalization</td>
<td>220</td>
</tr>
<tr>
<td>7.7.</td>
<td>How to do multiple regression using SPSS</td>
<td>225</td>
</tr>
<tr>
<td>7.7.1.</td>
<td>Some things to think about before the analysis</td>
<td>225</td>
</tr>
<tr>
<td>7.7.2.</td>
<td>Main options</td>
<td>225</td>
</tr>
<tr>
<td>7.7.3.</td>
<td>Statistics</td>
<td>227</td>
</tr>
<tr>
<td>7.7.4.</td>
<td>Regression plots</td>
<td>229</td>
</tr>
<tr>
<td>7.7.5.</td>
<td>Saving regression diagnostics</td>
<td>230</td>
</tr>
<tr>
<td>7.7.6.</td>
<td>Further options</td>
<td>231</td>
</tr>
<tr>
<td>7.8.</td>
<td>Interpreting multiple regression</td>
<td>233</td>
</tr>
<tr>
<td>7.8.1.</td>
<td>Descriptives</td>
<td>233</td>
</tr>
<tr>
<td>7.8.2.</td>
<td>Summary of model</td>
<td>234</td>
</tr>
<tr>
<td>7.8.3.</td>
<td>Model parameters</td>
<td>237</td>
</tr>
<tr>
<td>7.8.4.</td>
<td>Excluded variables</td>
<td>241</td>
</tr>
<tr>
<td>7.8.5.</td>
<td>Assessing the assumption of no multicollinearity</td>
<td>241</td>
</tr>
<tr>
<td>7.8.6.</td>
<td>Casewise diagnostics</td>
<td>244</td>
</tr>
<tr>
<td>7.8.7.</td>
<td>Checking assumptions</td>
<td>247</td>
</tr>
<tr>
<td>7.9.</td>
<td>What if I violate an assumption?</td>
<td>251</td>
</tr>
<tr>
<td>7.10.</td>
<td>How to report multiple regression</td>
<td>252</td>
</tr>
<tr>
<td>7.11.</td>
<td>Categorical predictors and multiple regression</td>
<td>253</td>
</tr>
<tr>
<td>7.11.1.</td>
<td>Dummy coding</td>
<td>253</td>
</tr>
<tr>
<td>7.11.2.</td>
<td>SPSS output for dummy variables</td>
<td>256</td>
</tr>
<tr>
<td>8.</td>
<td>Logistic regression</td>
<td>264</td>
</tr>
<tr>
<td>8.1.</td>
<td>What will this chapter tell me?</td>
<td>264</td>
</tr>
<tr>
<td>8.2.</td>
<td>Background to logistic regression</td>
<td>265</td>
</tr>
<tr>
<td>8.3.</td>
<td>What are the principles behind logistic regression?</td>
<td>265</td>
</tr>
<tr>
<td>8.3.1.</td>
<td>Assessing the model: the log-likelihood statistic</td>
<td>267</td>
</tr>
<tr>
<td>8.3.2.</td>
<td>Assessing the model: R and R²</td>
<td>268</td>
</tr>
<tr>
<td>8.3.3.</td>
<td>Assessing the contribution of predictors: the Wald statistic</td>
<td>269</td>
</tr>
<tr>
<td>8.3.4.</td>
<td>The odds ratio: Exp(B)</td>
<td>270</td>
</tr>
<tr>
<td>8.3.5.</td>
<td>Methods of logistic regression</td>
<td>271</td>
</tr>
<tr>
<td>8.4.</td>
<td>Assumptions and things that can go wrong</td>
<td>273</td>
</tr>
<tr>
<td>8.4.1.</td>
<td>Assumptions</td>
<td>273</td>
</tr>
<tr>
<td>8.4.2.</td>
<td>Incomplete information from the predictors</td>
<td>273</td>
</tr>
<tr>
<td>8.4.3.</td>
<td>Complete separation</td>
<td>274</td>
</tr>
<tr>
<td>8.4.4.</td>
<td>Overdispersion</td>
<td>276</td>
</tr>
<tr>
<td>8.5.</td>
<td>Binary logistic regression: an example that will make you feel eel</td>
<td>277</td>
</tr>
<tr>
<td>8.5.1.</td>
<td>The main analysis</td>
<td>278</td>
</tr>
<tr>
<td>8.5.2.</td>
<td>Method of regression</td>
<td>279</td>
</tr>
<tr>
<td>8.5.3.</td>
<td>Categorical predictors</td>
<td>279</td>
</tr>
<tr>
<td>8.5.4.</td>
<td>Obtaining residuals</td>
<td>280</td>
</tr>
<tr>
<td>8.5.5.</td>
<td>Further options</td>
<td>281</td>
</tr>
<tr>
<td>8.6.</td>
<td>Interpreting logistic regression</td>
<td>282</td>
</tr>
</tbody>
</table>
8.6.1. The initial model
8.6.2. Step 1: intervention
8.6.3. Listing predicted probabilities
8.6.4. Interpreting residuals
8.6.5. Calculating the effect size
8.6. The initial model
8.6.2. Step 1: intervention
8.6.3. Listing predicted probabilities
8.6.4. Interpreting residuals
8.6.5. Calculating the effect size
8.6.6. How to report logistic regression
8.6.7. Testing assumptions: another example
8.6.8. Predicting several categories: multinomial logistic regression
8.6.9. Running multinomial logistic regression in SPSS
8.6.10. Statistics
8.6.11. Other options
8.6.12. Interpreting the multinomial logistic regression output
8.6.13. Reporting the results

8.7. How to report logistic regression
8.8. Testing assumptions: another example
8.9. Predicting several categories: multinomial logistic regression
8.9.1. Running multinomial logistic regression in SPSS
8.9.2. Statistics
8.9.3. Other options
8.9.4. Interpreting the multinomial logistic regression output
8.9.5. Reporting the results

What have I discovered about statistics?
Key terms that I've discovered
Smart Alex's tasks
Further reading
Online tutorial
Interesting real research

9 Comparing two means
9.1. What will this chapter tell me?
9.2. Looking at differences
9.2.1. A problem with error bar graphs of repeated-measures designs
9.2.2. Step 1: calculate the mean for each participant
9.2.3. Step 2: calculate the grand mean
9.2.4. Step 3: calculate the adjustment factor
9.2.5. Step 4: create adjusted values for each variable
9.3. The t-test
9.3.1. Rationale for the t-test
9.3.2. Assumptions of the t-test
9.4. The dependent t-test
9.4.1. Sampling distributions and the standard error
9.4.2. The dependent t-test equation explained
9.4.3. The dependent t-test and the assumption of normality
9.4.4. Dependent t-tests using SPSS
9.4.5. Output from the dependent t-test
9.4.6. Calculating the effect size
9.4.7. Reporting the dependent t-test
9.5. The independent t-test
9.5.1. The independent t-test equation explained
9.5.2. The independent t-test using SPSS
9.5.3. Output from the independent t-test
9.5.4. Calculating the effect size
9.5.5. Reporting the independent t-test
9.6. Between groups or repeated measures?
9.7. The t-test as a general linear model
9.8. What if my data are not normally distributed?
10 Comparing several means: ANOVA (GLM 1)

10.1. What will this chapter tell me?
10.2. The theory behind ANOVA
 10.2.1. Inflated error rates
 10.2.2. Interpreting F
 10.2.3. ANOVA as regression
 10.2.4. Logic of the F-ratio
 10.2.5. Total sum of squares (SS_T)
 10.2.6. Model sum of squares (SS_M)
 10.2.7. Residual sum of squares (SS_E)
 10.2.8. Mean squares
 10.2.9. The F-ratio
 10.2.10. Assumptions of ANOVA
 10.2.11. Planned contrasts
 10.2.12. Post hoc procedures

10.3. Running one-way ANOVA on SPSS
 10.3.1. Planned comparisons using SPSS
 10.3.2. Post hoc tests in SPSS
 10.3.3. Options

10.4. Output from one-way ANOVA
 10.4.1. Output for the main analysis
 10.4.2. Output for planned comparisons
 10.4.3. Output for post hoc tests

10.5. Calculating the effect size

10.6. Reporting results from one-way independent ANOVA

10.7. Violations of assumptions in one-way independent ANOVA

11 Analysis of covariance, ANCOVA (GLM 2)

11.1. What will this chapter tell me?
11.2. What is ANCOVA?
11.3. Assumptions and issues in ANCOVA
 11.3.1. Independence of the covariate and treatment effect
 11.3.2. Homogeneity of regression slopes
11.4. Conducting ANCOVA on SPSS
 11.4.1. Inputting data
 11.4.2. Initial considerations: testing the independence of the independent variable and covariate
13 Repeated-measures designs (GLM 4)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1. What will this chapter tell me?</td>
<td>457</td>
</tr>
<tr>
<td>13.2. Introduction to repeated-measures designs</td>
<td>458</td>
</tr>
<tr>
<td>13.2.1. The assumption of sphericity</td>
<td>459</td>
</tr>
<tr>
<td>13.2.2. How is sphericity measured?</td>
<td>459</td>
</tr>
<tr>
<td>13.2.3. Assessing the severity of departures from sphericity</td>
<td>460</td>
</tr>
<tr>
<td>13.2.4. What is the effect of violating the assumption of sphericity?</td>
<td>460</td>
</tr>
<tr>
<td>13.2.5. What do you do if you violate sphericity?</td>
<td>461</td>
</tr>
<tr>
<td>13.3. Theory of one-way repeated-measures ANOVA</td>
<td>462</td>
</tr>
<tr>
<td>13.3.1. The total sum of squares (SS_t)</td>
<td>464</td>
</tr>
<tr>
<td>13.3.2. The within-participant (SS_w)</td>
<td>465</td>
</tr>
<tr>
<td>13.3.3. The model sum of squares (SS_m)</td>
<td>466</td>
</tr>
<tr>
<td>13.3.4. The residual sum of squares (SS_r)</td>
<td>467</td>
</tr>
<tr>
<td>13.3.5. The mean squares</td>
<td>467</td>
</tr>
<tr>
<td>13.3.6. The F-ratio</td>
<td>467</td>
</tr>
<tr>
<td>13.3.7. The between-participant sum of squares</td>
<td>468</td>
</tr>
<tr>
<td>13.4. One-way repeated-measures ANOVA using SPSS</td>
<td>468</td>
</tr>
<tr>
<td>13.4.1. The main analysis</td>
<td>468</td>
</tr>
<tr>
<td>13.4.2. Defining contrasts for repeated-measures</td>
<td>471</td>
</tr>
<tr>
<td>13.4.3. Post hoc tests and additional options</td>
<td>471</td>
</tr>
<tr>
<td>13.5. Output for one-way repeated-measures ANOVA</td>
<td>474</td>
</tr>
<tr>
<td>13.5.1. Descriptives and other diagnostics</td>
<td>474</td>
</tr>
<tr>
<td>13.5.2. Assessing and correcting for sphericity: Mauchly's test</td>
<td>474</td>
</tr>
<tr>
<td>13.5.3. The main ANOVA</td>
<td>475</td>
</tr>
<tr>
<td>13.5.4. Contrasts</td>
<td>477</td>
</tr>
<tr>
<td>13.5.5. Post hoc tests</td>
<td>478</td>
</tr>
<tr>
<td>13.6. Effect sizes for repeated-measures ANOVA</td>
<td>479</td>
</tr>
<tr>
<td>13.7. Reporting one-way repeated-measures ANOVA</td>
<td>481</td>
</tr>
<tr>
<td>13.8. Repeated-measures with several independent variables</td>
<td>482</td>
</tr>
<tr>
<td>13.8.1. The main analysis</td>
<td>484</td>
</tr>
<tr>
<td>13.8.2. Contrasts</td>
<td>488</td>
</tr>
<tr>
<td>13.8.3. Simple effects analysis</td>
<td>488</td>
</tr>
<tr>
<td>13.8.4. Graphing interactions</td>
<td>490</td>
</tr>
<tr>
<td>13.8.5. Other options</td>
<td>491</td>
</tr>
<tr>
<td>13.9. Output for factorial repeated-measures ANOVA</td>
<td>492</td>
</tr>
<tr>
<td>13.9.1. Descriptives and main analysis</td>
<td>492</td>
</tr>
<tr>
<td>13.9.2. The effect of drink</td>
<td>493</td>
</tr>
<tr>
<td>13.9.3. The effect of imagery</td>
<td>495</td>
</tr>
<tr>
<td>13.9.4. The interaction effect (drink x imagery)</td>
<td>496</td>
</tr>
<tr>
<td>13.9.5. Contrasts for repeated-measures variables</td>
<td>498</td>
</tr>
<tr>
<td>13.10. Effect sizes for factorial repeated-measures ANOVA</td>
<td>501</td>
</tr>
<tr>
<td>13.11. Reporting the results from factorial repeated-measures ANOVA</td>
<td>502</td>
</tr>
<tr>
<td>13.12. What to do when assumptions are violated in repeated-measures ANOVA</td>
<td>503</td>
</tr>
<tr>
<td>What have I discovered about statistics?</td>
<td>503</td>
</tr>
<tr>
<td>Key terms that I've discovered</td>
<td>504</td>
</tr>
</tbody>
</table>
14 Mixed design ANOVA (GLM 5)

14.1. What will this chapter tell me? ① 506
14.2. Mixed designs ② 507
14.3. What do men and women look for in a partner? ③ 508
14.4. Mixed ANOVA on SPSS ② 508
 14.4.1. The main analysis ② 508
 14.4.2. Other options ② 513
14.5. Output for mixed factorial ANOVA: main analysis ③ 514
 14.5.1. The main effect of gender ② 517
 14.5.2. The main effect of looks ② 518
 14.5.3. The main effect of charisma ② 520
 14.5.4. The interaction between gender and looks ② 521
 14.5.5. The interaction between gender and charisma ② 523
 14.5.6. The interaction between attractiveness and charisma ② 524
 14.5.7. The interaction between looks, charisma and gender ③ 527
 14.5.8. Conclusions ③ 530
14.6. Calculating effect sizes ③ 531
14.7. Reporting the results of mixed ANOVA ② 533
14.8. What to do when assumptions are violated in mixed ANOVA ③ 536
 What have I discovered about statistics? ② 536
 Key terms that I’ve discovered 537
 Smart Alex’s tasks 537
 Further reading 538
 Online tutorials 538
 Interesting real research 538

15 Non-parametric tests

15.1. What will this chapter tell me? ① 539
15.2. When to use non-parametric tests ① 540
15.3. Comparing two independent conditions: the Wilcoxon rank-sum test and Mann–Whitney test ① 540
 15.3.1. Theory ② 542
 15.3.2. Inputting data and provisional analysis ① 545
 15.3.3. Running the analysis ① 546
 15.3.4. Output from the Mann–Whitney test ① 548
 15.3.5. Calculating an effect size ② 550
 15.3.6. Writing the results ① 550
15.4. Comparing two related conditions: the Wilcoxon signed-rank test ① 552
 15.4.1. Theory of the Wilcoxon signed-rank test ② 552
 15.4.2. Running the analysis ① 554
 15.4.3. Output for the ecstasy group ① 556
 15.4.4. Output for the alcohol group ① 557
 15.4.5. Calculating an effect size ② 558
 15.4.6. Writing the results ① 558
16.8. Reporting results from MANOVA
16.9. Following up MANOVA with discriminant analysis
16.10. Output from the discriminant analysis
16.11. Reporting results from discriminant analysis
16.12. Some final remarks
 16.12.1. The final interpretation
 16.12.2. Univariate ANOVA or discriminant analysis?
16.13. What to do when assumptions are violated in MANOVA

What have I discovered about statistics?
Key terms that I've discovered
Smart Alex’s tasks
Further reading
Online tutorials
Interesting real research

17 Exploratory factor analysis
17.1. What will this chapter tell me?
17.2. When to use factor analysis
17.3. Factors
 17.3.1. Graphical representation of factors
 17.3.2. Mathematical representation of factors
 17.3.3. Factor scores
17.4. Discovering factors
 17.4.1. Choosing a method
 17.4.2. Communality
 17.4.3. Factor analysis vs. principal component analysis
 17.4.4. Theory behind principal component analysis
 17.4.5. Factor extraction: eigenvalues and the scree plot
 17.4.6. Improving interpretation: factor rotation
17.5. Research example
 17.5.1. Before you begin
17.6. Running the analysis
 17.6.1. Factor extraction on SPSS
 17.6.2. Rotation
 17.6.3. Scores
 17.6.4. Options
17.7. Interpreting output from SPSS
 17.7.1. Preliminary analysis
 17.7.2. Factor extraction
 17.7.3. Factor rotation
 17.7.4. Factor scores
 17.7.5. Summary
17.8. How to report factor analysis
17.9. Reliability analysis
 17.9.1. Measures of reliability
 17.9.2. Interpreting Cronbach’s α (some cautionary tales …)
 17.9.3. Reliability analysis on SPSS
 17.9.4. Interpreting the output
17.10. How to report reliability analysis
What have I discovered about statistics? ②
Key terms that I’ve discovered ②
Smart Alex’s tasks ②
Further reading ②
Online tutorial ②
Interesting real research ②

18 Categorical data 686
18.1. What will this chapter tell me? ① 686
18.2. Analysing categorical data ① 687
18.3. Theory of analysing categorical data ① 687
 18.3.1. Pearson’s chi-square test ① 688
 18.3.2. Fisher’s exact test ① 690
 18.3.3. The likelihood ratio ② 690
 18.3.4. Yates’ correction ② 691
18.4. Assumptions of the chi-square test ① 691
18.5. Doing chi-square on SPSS ① 692
 18.5.1. Entering data: raw scores ① 692
 18.5.2. Entering data: weight cases ① 692
 18.5.3. Running the analysis ① 694
 18.5.4. Output for the chi-square test ① 696
 18.5.5. Breaking down a significant chi-square test with standardized residuals ② 698
 18.5.6. Calculating an effect size ② 699
 18.5.7. Reporting the results of chi-square ① 700
18.6. Several categorical variables: loglinear analysis ③ 702
 18.6.1. Chi-square as regression ① 702
 18.6.2. Loglinear analysis ① 708
18.7. Assumptions in loglinear analysis ② 710
18.8. Loglinear analysis using SPSS ② 711
 18.8.1. Initial considerations ② 711
 18.8.2. The loglinear analysis ② 712
18.9. Output from loglinear analysis ③ 714
18.10. Following up loglinear analysis ② 719
18.11. Effect sizes in loglinear analysis ③ 720
18.12. Reporting the results of loglinear analysis ② 721

What have I discovered about statistics? ① 722
Key terms that I’ve discovered 722
Smart Alex’s tasks 722
Further reading 724
Online tutorial 724
Interesting real research 724

19 Multilevel linear models 725
19.1. What will this chapter tell me? ① 725
19.2. Hierarchical data ② 726
 19.2.1. The intraclass correlation ② 728
 19.2.2. Benefits of multilevel models ② 729
19.3. Theory of multilevel linear models ③ 730
19.3.1. An example
19.3.2. Fixed and random coefficients

19.4. The multilevel model
19.4.1. Assessing the fit and comparing multilevel models
19.4.2. Types of covariance structures

19.5. Some practical issues
19.5.1. Assumptions
19.5.2. Sample size and power
19.5.3. Centreing variables

19.6. Multilevel modelling on SPSS
19.6.1. Entering the data
19.6.2. Ignoring the data structure: ANOVA
19.6.3. Ignoring the data structure: ANCOVA
19.6.4. Factoring in the data structure: random intercepts
19.6.5. Factoring in the data structure: random intercepts and slopes
19.6.6. Adding an interaction to the model

19.7. Growth models
19.7.1. Growth curves (polynomials)
19.7.2. An example: the honeymoon period
19.7.3. Restructuring the data
19.7.4. Running a growth model on SPSS
19.7.5. Further analysis

19.8. How to report a multilevel model

What have I discovered about statistics?
Key terms that I’ve discovered
Smart Alex’s tasks
Further reading
Online tutorial
Interesting real research